Dark Matter Detection
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Generic 1st Generation WIMP Detection Experiment
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Spectrum of WIMPs in a Detector on Earth

Based on simple assumptions:
e Particles are gravitationally bound to halo, with Maxwellian
velocity distribution (V=220 Km/s) and local density 0.3 GeV/cm’
 WIMPs are heavy particles, 10 GeV< M,,,p< | TeV.
B Nuclear scattering can efficiently transfer energy to a nucleus, since Miuctens~Myimp.

The signal will be a nuclear recoil, with energy ~10 keV
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The Experimental Challenge

Energy transferred by WIMP to a target nucleus is low.
= ~10keV, similar to an X-ray
= Recoil track has a length of only ~100 nm in a solid material

Event rate is low.
= Cross sections for nuclear scattering <1043 cm?
= Implies < 0.01 events per kg of target per day

Backgrounds from environmental radioactivity are high.
* Trace levels of radioactive isotopes in environment and
detector construction materials.
= ~10%/kg-day with state-of-the-art shielding
= Most of these events are due to scattering on electrons
(Compton, photoelectric scattering), while the signal is a
nuclear recoil.

=> We need to build detectors which discriminate between nuclear and
electron scattering at low energy, over large target volumes.
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CDMS Detectors: Background Rejection Though Simultaneous
Measurement of Phonons and lonization

Use charge/phonon AND phonon timing
Measured background rejection:
99.9998% for y’s, 99.79% for p’s

Clean nuclear recoil selection with ~ 50%
efficiency I
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Ionization yield
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CDMS Spin-Independent Sensitivity

* Most recent result: Feb. 2008, 650 kg-days (121 kg-days after cuts)
* Expecting another factor of 2-3 improvement in sensitivity this summer from
data already collected.
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New, More Massive CDMS Detectors

e New detectors: 2.5 cm thick (600 g) instead of 1 cm.

e Detector optimization: full wafer lithography &
better tungsten target improve yield, reducing need
for testing and repairs.

e Supertowers: 5 dark matter detectors plus 2 thin
endcap veto detectors. Each supertower will have
fiducial mass equivalent to previous 5-tower array.

e Two supertowers are funded and first was installed
in April.

* Have proposed 5-tower upgrade for Soudan.
=16 kg germanium target mass by 2011

Decision expected this summer by DOE & NSF

First 3-kg supertower
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Why Bubble Chambers?

1. Large target masses would be possible.
e  Mult1 ton chambers were built in the 50’s- 80’s.
2. An exciting menu of available target nuclei.

No liquid that has been tested seriously has failed to work
as a bubble chamber liquid (Glaser, 1960).

*  Most common: Hydrogen, Propane

*  Butalso “Heavy Liquids”: Xe, Ne, CF;Br, CH;l, and CCLF,,.

*  Good targets for both spin- dependent and spin-independent
scattering.

*  Possible to “swap” liquids to check suspicious signals.

3. Backgrounds due to environmental gamma and beta activity can be
suppressed by running at low pressure.

*  Bubble nucleation depends on dE/dx, which 1s low for electrons, high
for nuclear recoils



A Typical COUPP Event

Two views of same bubble (cameras offset by 90°):

A WIMP interaction
would produce a single
bubble (no tracks or
multiples)

Appearance of a bubble
causes the chamber to
be triggered by image
processing software.

Bubble positions are
measured in three
dimensions from stereo
camera views



Data from 2006 Run

Data from pressure scan at two temperatures.
Fit to alphas + WIMPs
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COUPRP: First Results

We have competitive sensitivity for spin-dependent scattering, despite high radon
background in 200-2007 runs of 2-kg chamber.
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COUPP 60-kg Chamber (Fermilab E-961)

* More than 30 times larger target volume than previous device.
* High purity materials and fluid handling systems based on solar neutrino detector
technology--- goal is to reduce alpha-emitter backgrounds by three orders of

magnitude.
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Summary: Current Dark Matter Experiments
with Fermilab Participation

e CDMS
— Leading spin-independent sensitivity over most of mass
range.
— Expecting to release new result this summer- x 3 sensitivity.
— First 3-kg “supertower” installed in Soudan.
— Detector costs are coming down rapidly, due to larger
crystals, more efficient processing.
e COUPP

— Leading spin-dependent WIMP-proton sensitivity below 30
GeV.

— 60-kg detector is nearing completion

— Backgrounds from alpha decay expected to decrease with
use of higher purity materials, better fluid handling.



The Competition: Argon and Xenon TPCs

PAEI‘:
Measure scintillation and ionization in a large

(s 2y
volume of condensed noble gas. D':] D D D
3 Secondary

— scintillation
Xenon-100 kg and WARP- 140 kg (Argon)
detectors are now running at Gran Sasso, will
quickly take lead in sensitivity if they reach
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Xenon advantages Primary

— large cross section (A2) enhancement for Interaction nisaton
coherent WIMP-nucleus scattering.

— Efficient self-shielding, due to high density g: e S
of liquid xenon. £ 7
— No long-lived radioactive xenon isotopes §.u If’
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Argon advantages
— Much higher background discrimination I R Pulse shape
power due to discrepancy in scintillation discrimination
decay times for signal vs. background .
events. < of o —— in argon
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* DUSEL Proposal:
Coordinated
preliminary design
of multi-ton argon
and xenon TPCs.

* Includes
participants in
WARP, Xenon-100
+ others



Argon Detector Concept

- Largest diameter cryostat that 745 top PMTs
will fit down DUSEL elevator.

« 5 tons depleted argon
(2.6 tons after fiducial cut)

30 keV recoil energy threshold
« ~ 2 cm position resolution

* 0.5 background events
expected in 5-year run.

3 order of magnitude :\0 CT thick
Improvement over present CryliC vegst
CDMS/ XENON sensitivity 3.6 meters




Proposals for Dark Matter Experiments at DUSEL

* The Preliminary Design (NSF S4 Solicitation) proposals show what the community
thinks will be possible on a 10-year time scale.

* Each proposal aims to achieve negligible background rates for target masses of 1 ton or
more.

* Fermilab scientists are involved in three of these so far (indicated in red).

Technology Experiment Target Mass Cost
(T) (M$)
Low temperature GEODM Germanium 1.5 50
lonization/Phonon
Bubble Chamber COUPP Fluorine, n* 0.5 n*0.5
lodine
Liquid Argon/Neon Scintillator | CLEAN-40T Argon 40 40
Neon
Dual Phase TPC LZ20 Xenon 207? 1007?
MAX Argon 5 17
Xenon 2 18
Gas TPC DRIFT Fluorine 1 60
Sulfur




Summary

Presently, Fermilab supports two of the most sensitive experiments, CDMS
and COUPP. Both are expected to achieve large sensitivity improvements
in the next year.

Competition is heating up, with Xenon-100 and WARP-140 beginning to
operate.

DUSEL proposals describe spectrum of future possibilities

DUSEL detectors will have target masses of >1 ton and no background.

Sensitivity likely to increase by 3-4 orders of magnitude over next decade, exploring
much of parameter space for dark matter in MSSM.

Intense competition between technologies; hard to pick a winner at this stage.
It seems that Fermilab has much to contribute regardless of technology choice.
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Low-Mass WIMP Search With CCDs

J. Estrada et. al, Arxiv 0802.2872
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Low mass reach possible
thanks to very low
readout noise in DECam
CCD detectors.



Small-scale laser experiment using accelerator magnets to

GamSmeV search for dark particles
""" gammev.fnal.gov

Cryogenic Tevatron Cryogenic Vacuum tube PMT
magnet magnet magnet connected to
feed can return can pIunger

Laser Vacuum

box port box

Light shining through a wall Particle trapped in a jar
excludes axion-like particles excludes “chameleons” Future initiatives
- —— . T le+14 " —— .
3 0 2 | w/lasers+magnets:
o0 5 1e+13

1 2"dsearch for
I chameleons

photon coupling By

10° 1e+12

' Optical cavity
routt PRL102,030402(2009) |  technique for LSW

1e-05 1e-04 0.001
effective chameleon mass in chamber [eV]

PRL 100, 080402 (2008)

| GammeV

1 I 1 1 L | 1
0.4 05 06 0.7 0809 1 2
m, [meV]



